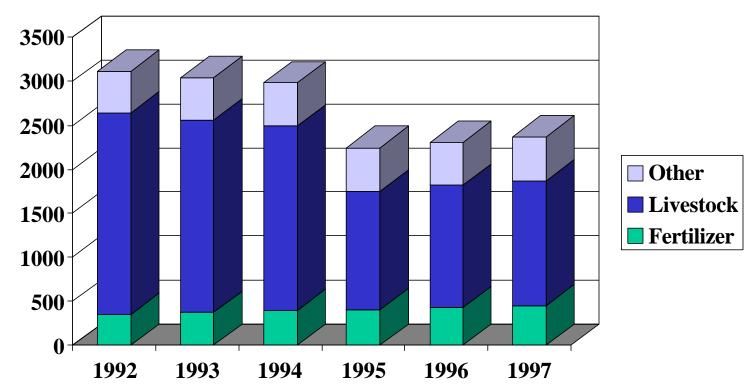

Examining the Temporal Variability of Ammonia and Nitric Oxide Emissions from Agricultural Processes

Thomas E. Pierce
Atmospheric Modeling Division/ORD
U.S. Environmental Protection Agency


Lucille W. Bender Dyntel Corporation

AWMA/EPA Emission Inventory Conference Raleigh, North Carolina October 27, 1999

1992 - 1997 Net Inventory

NH3 (thousand metric tons N)

Source: EPA National Air Pollutant Emission Trends Update, 1970-1997 (1998)

Estimates of ammonia emissions from livestock for 1992

96.1 million cows x 22.9 kg NH ₃ /cow	$2201 \times 10^6 \text{ kg NH}_3$
57.6 million hogs x 9.2 kg NH ₃ /hog	$530 \times 10^6 \text{ kg NH}_3$
351.3 million layers-pullets x 0.18 kg NH ₃ /chicken	$63 \times 10^6 \text{ kg NH}_3$
835.2 million broilers x 0.18 kg NH ₃ /chicken	$150 \times 10^6 \text{ kg NH}_3$
87.6 million turkeys x 0.86 kg NH ₃ /turkey	$75 \times 10^6 \text{ kg NH}_3$
10.8 million sheep x 3.4 kg NH ₃ /sheep	$37 \times 10^6 \text{ kg NH}_3$
Total independent calculation:	$3056 \times 10^6 \text{ kg NH}_3$
1992 NET inventory (livestock):	$2785 \times 10^6 \text{ kg NH}_3$

Source of data: Agricultural statistics from the U.S. Department of Agriculture (http://www.nass.usda.gov/census/); emission factors from Batteye et al.; 1992 NET inventory from EPA (1998).

Estimates of ammonia emissions from livestock for 1997

99.0 million cows x 22.9 kg NH ₃ /cow	$2267 \times 10^6 \text{ kg NH}_3$
61.2 million hogs x 9.2 kg NH ₃ /hog	$563 \times 10^6 \text{ kg NH}_3$
367.0 million layers-pullets x 0.18 kg NH ₃ /chicken	$66 \times 10^6 \text{ kg NH}_3$
1037.2 million broilers x 0.18 kg NH ₃ /chicken	$187 \times 10^6 \text{ kg NH}_3$
104.3 million turkeys x 0.86 kg NH ₃ /turkey	$90 \times 10^6 \text{ kg NH}_3$
7.8 million sheep x 3.4 kg NH ₃ /sheep	$27 \times 10^6 \text{ kg NH}_3$
Total independent calculation:	$3200 \times 10^6 \text{ kg NH}_3$
1997 NET inventory (livestock):	$1715 \times 10^6 \text{ kg NH}_3$

Source of data: Agricultural statistics from the U.S. Department of Agriculture (http://www.nass.usda.gov/census/); emission factors from Batteye et al.; 1997 NET inventory from EPA (1998).

Recommendations for the NET Inventory

Based on a review of livestock emissions from the 1992 – 1997 inventory:

- (1) Inventories should use the latest available (or if necessary, projected) animal population statistics.
- (2) Inventories should include a turkey category.
- (3) Inventories should account for the <u>total</u> chicken population, by including layers/pullets—called "all chickens" by the USDA—and commercial broilers.

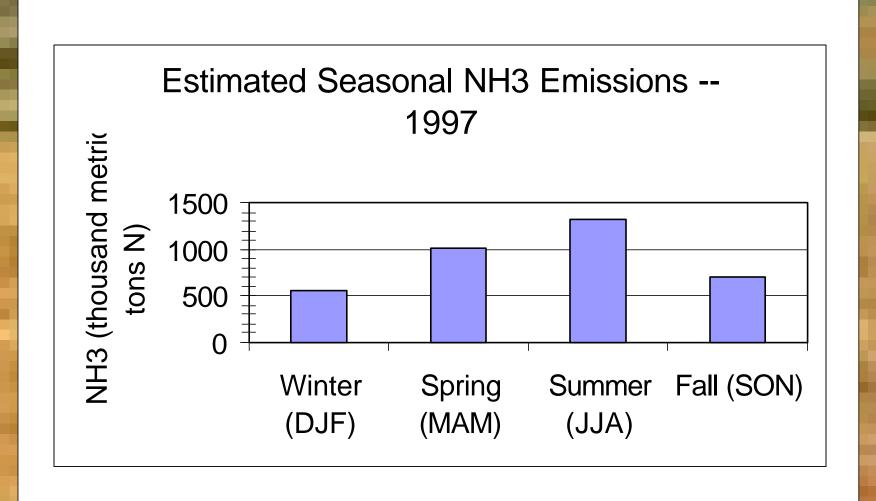
(Note: These recommendations have been considered in the 1998 NET inventory.)

Nitrogen-based fertilizer usage in the United States

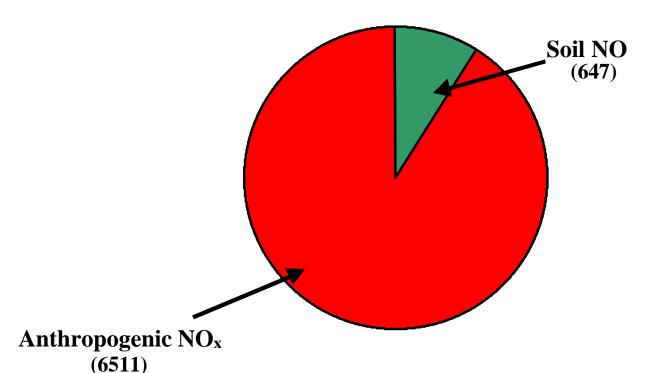
Crop	Fertilized area (10 ⁶ ha)	Typical fertilizer application rate (kg N/ha)	Total fertilizer (10 ⁶ kg N)	Fertilizer (percent of total)
Corn	28.26	141	3985	63%
Wheat	23.81	63	1500	24%
Cotton	5.34	93	497	8%
Soybeans	2.68	6	16	2%
Miscellaneous	1.54	141	217	3%

Source: U.S. Department of Agriculture (1996) Agricultural Chemical Usage, 1995 Field Crops Survey, National Agricultural Statistics Service, Washington DC (http://usda.mannlib.cornell.edu)

Proposed Seasonal Allocations of Ammonia Emissions from Fertilizer Application


Season	Allocation
Winter (DJF)	10%
Spring (MAM)	50%
Summer (JJA)	30%
Autumn (SON)	10%

Tentative Seasonal Allocations of Ammonia Emissions from Animal Husbandry


Season	Allocation	
Winter (DJF)	15%	
Spring (MAM)	25%	
Summer (JJA)	40%	
Autumn (SON)	20%	

Rationale (based mostly on European studies):

- (1) Assume that emissions from animal houses do not vary seasonally (questionable assumption).
- (2) Emissions from houses contribute up to 50% of the total inventory.
- (3) Emissions increase when "slurry" is applied to fields, which tends to occur during the growing season.
- (4) Volatilization rates increase during warm/dry conditions (~50%/10 C temperature increase).

NO_x Emissions for 1997 (thousand metric tons N)

Source: EPA National Air Pollutant Emission Trends Update, 1970-1997 (1998)

Environmental Algorithms for Soil NO Emissions

Existing BEIS2 algorithm:

$$E_T = E_{30} \times \exp[0.071 \times (T - T_s)]$$

 $E_T = NO$ emission flux at soil temperature T (C),

 E_{30} = normalized emission flux at soil temperature 30 C,

 $T_s =$ standardized soil temperature (30 C)

Proposed new algorithm (Yienger and Levy, Empirical model of global soil-biogenic NOx emissions, *JGR*, **97**, 7511-7519, 1995):

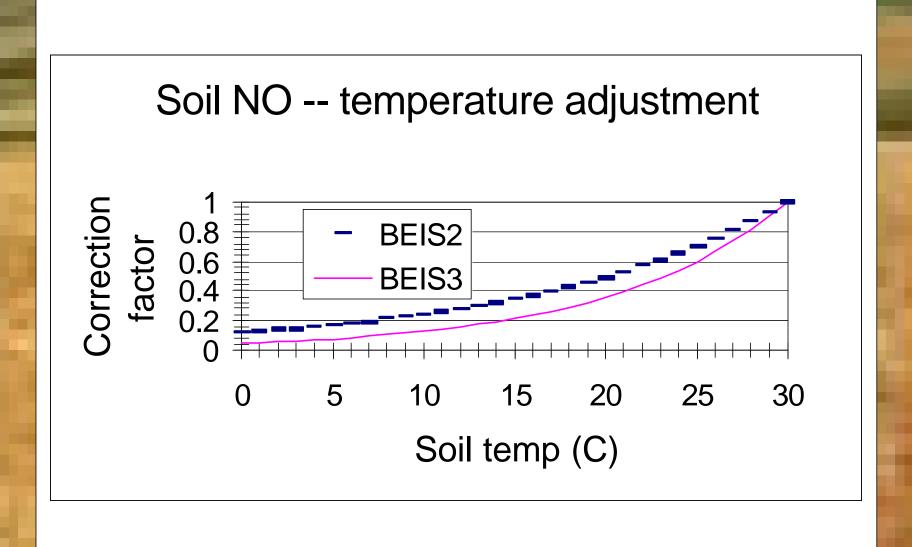
$$E = R_{2.5} \times T_{adj} \times P_{adj} \times F_{adj} \times C_{adj}$$

E = NO emission flux corrected for environmental conditions,

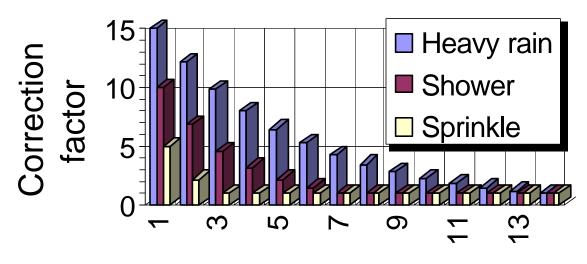
 $R_{2.5}$ = normalized flux assuming that 2.5% fertilizer nitrogen is emitted as NO during the growing season,

 $T_{adj} =$ temperature adjustment factor,

 $P_{adj} =$ precipitation adjustment factor (1-15),

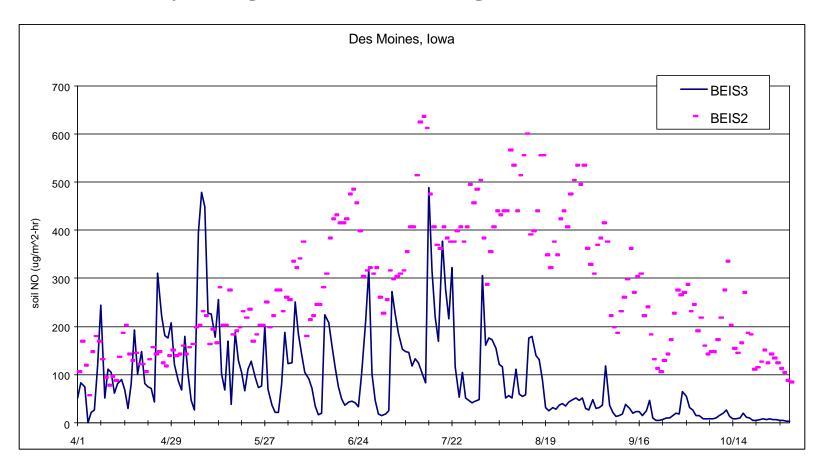

 $F_{adj} =$ fertilizer adjustment factor (0-1), $C_{adj} =$ canopy adjustment factor (0.5-1)

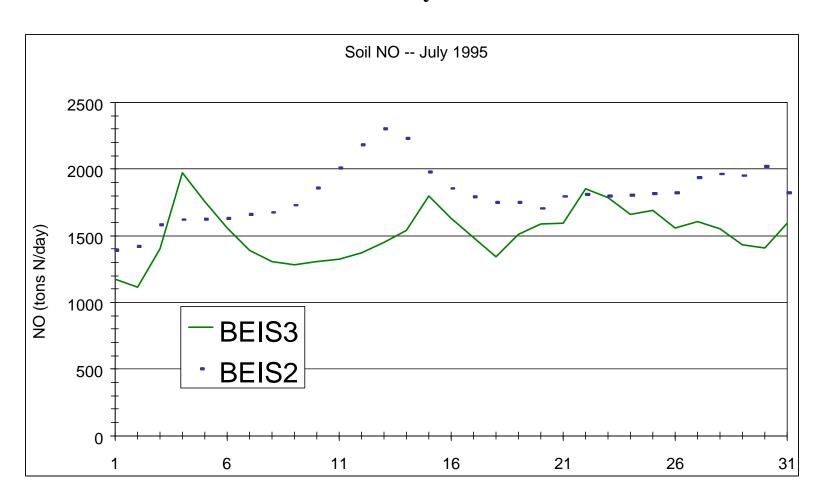
Normalized Soil NO Emission Rates

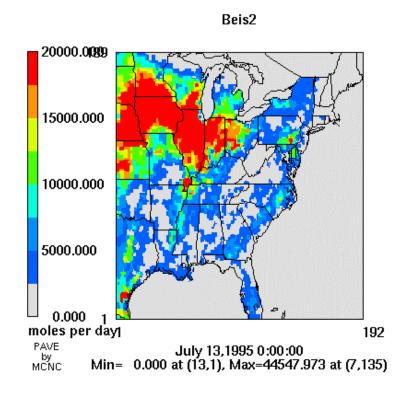

Crop	BEIS3 factor	BEIS2 factor	
_	$(\mu g \text{ NO m}^{-2} \text{ h}^{-1})$	$(\mu g \text{ NO m}^{-2} \text{ h}^{-1})$	
Potatoes	258	193	
Corn	145	578	
Sorghum	145	578	
Barley	97	257	
Cotton	97	257	
Oats	97	257	
Tobacco	97	257	
Miscellaneous	85	13	
Wheat	65	193	
Alfalfa	58	13	
Hay	58	13	
Pasture	58	58	
Peanuts	58	13	
Rye	58	13	
Soybeans	58	13	
Rice	1	1	

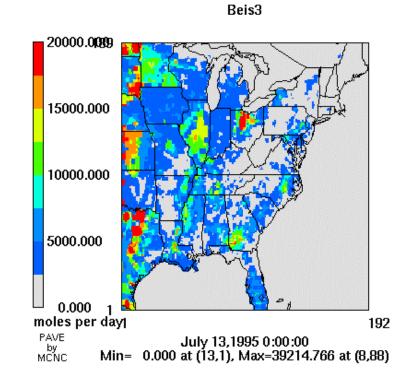
⁽¹⁾ BEIS3 factors are based on a loss rate of 2.5% from nitrogen fertilizer and a growing season of 214 days.


⁽²⁾ Miscellaneous rate based on average fertilizer application of all other crops.

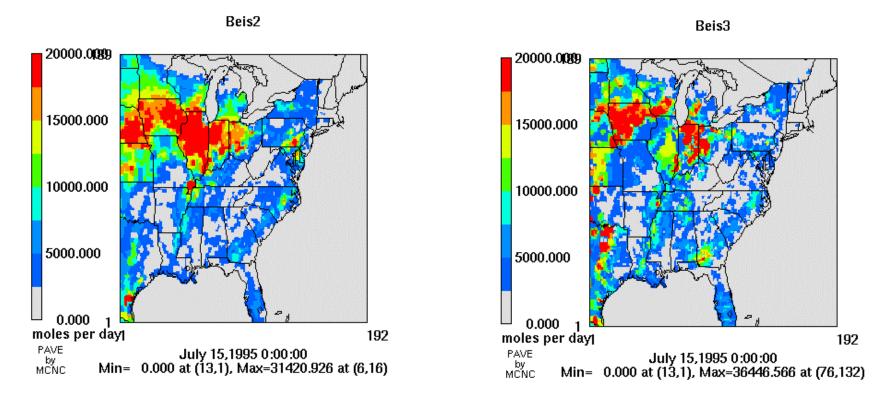

Precipitation enhancement


Day after rain


Daily average fluxes for corn using 1995 DSM met data



Simulation for the UAM eastern U.S. modeling domain using meteorological data from July 1995



Layer 1 no

Layer 1 no

Summary and Recommendations

Ammonia:

- crude seasonal adjustments of agriculture may change emissions x2
- ⇒ livestock adjustment is very tenuous

NEED: fertilizer application schedules and staged livestock measurements in the U.S.

Soil NO:

- ⇒ new (BEIS3?) algorithm yields more variability and overall lower emissions than BEIS2
- ⇒ algorithm will be more complex to implement

NEED: field verification